An Asymptotic Formula for a Sum Involving Zeros of the Riemann Zeta-function
نویسندگان
چکیده
E. Landau gave an interesting asymptotic formula for a sum involving zeros of the Riemann zeta-function. We give an asymptotic formula which can be regarded as a smoothed version of Landau’s formula.
منابع مشابه
Generalizations of a Cotangent Sum Associated to the Estermann Zeta Function
Cotangent sums are associated to the zeros of the Estermann zeta function. They have also proven to be of importance in the Nyman-Beurling criterion for the Riemann Hypothesis. The main result of the paper is the proof of the existence of a unique positive measure μ on R, with respect to which certain normalized cotangent sums are equidistributed. Improvements as well as further generalizations...
متن کاملRiemann ’ s and ζ ( s )
[This document is http://www.math.umn.edu/ ̃garrett/m/complex/notes 2014-15/09c Riemann and zeta.pdf] 1. Riemann’s explicit formula 2. Analytic continuation and functional equation of ζ(s) 3. Appendix: Perron identity [Riemann 1859] exhibited a precise relationship between primes and zeros of ζ(s). A similar idea applies to any zeta or L-function with analytic continuation, functional equation, ...
متن کاملOn the distribution of zeros of the Hurwitz zeta-function
Assuming the Riemann hypothesis, we prove asymptotics for the sum of values of the Hurwitz zeta-function ζ(s, α) taken at the nontrivial zeros of the Riemann zeta-function ζ(s) = ζ(s, 1) when the parameter α either tends to 1/2 and 1, respectively, or is fixed; the case α = 1/2 is of special interest since ζ(s, 1/2) = (2s − 1)ζ(s). If α is fixed, we improve an older result of Fujii. Besides, we...
متن کاملPrimes in almost all short intervals and the distribution of the zeros of the Riemann zeta-function
Abstract We study the relations between the distribution of the zeros of the Riemann zeta-function and the distribution of primes in “almost all” short intervals. It is well known that a relation like ψ(x)−ψ(x−y) ∼ y holds for almost all x ∈ [N, 2N ] in a range for y that depends on the width of the available zero-free regions for the Riemann zeta-function, and also on the strength of density b...
متن کاملThe Development of a Hybrid Asymptotic Expansion for the Hardy Function , Consisting of Just Main Sum Terms, Some Less than the Celebrated Riemann-siegel Formula
This paper begins with a re-examination of the Riemann-Siegel Integral, which first discovered amongst by Bessel-Hagen in 1926 and expanded upon by C. L. Siegel on his 1932 account of Riemann’s unpublished work on the zeta function. By application of standard asymptotic methods for integral estimation, and the use of certain approximations pertaining to special functions, it proves possible to ...
متن کامل